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Abstract

Genome-wide mapping of three dimensional chromatin organization is an important yet technically challenging
task. To aid experimental effort and to understand the determinants of long-range chromatin interactions, we have
developed a computational model integrating Hi-C and histone mark ChIP-seq data to predict two important
features of chromatin organization: chromatin interaction hubs and topologically associated domain (TAD)
boundaries. Our model accurately and robustly predicts these features across datasets and cell types. Cell-type
specific histone mark information is required for prediction of chromatin interaction hubs but not for TAD
boundaries. Our predictions provide a useful guide for the exploration of chromatin organization.
Background
Chromosomal DNA is packaged into the nucleosomes,
each containing an octamer of histone proteins. Histone
modifications are known as post-translational modifica-
tions at histone tails, such as acetylation, methylation,
phosphorylation, and ubiquitination [1]. Genome-wide
distribution of histone modifications can be profiled
using chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) [2]. Functionally,
histone modifications serve as distinct markers for tran-
scriptional regulation and many other biological processes
through controlling the accessibility of DNA and recruit-
ment of specific proteins [3–6].
In addition to the nucleosome positioning and histone

modifications, the chromatin also undergoes additional
layers of compaction through DNA looping and folding,
forming complex, dynamic 3D structures. Genome-wide
mapping of the 3D chromatin organization and its dy-
namic changes will provide important insights into the
cell-type specific gene regulation and functions of genetic
information [7]. A number of technologies, including 3C,
4C, 5C, ChIA-PET and Hi-C, have been developed to
experimentally map long-range chromatin interactions
[8]. Among these technologies, Hi-C provides the most
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comprehensive view of genome-wide chromatin interac-
tions [9].
Recently, several Hi-C datasets have been generated and

deposited in the public domain [9–15]. Analyses of these
data reveal distinct features such as chromatin compart-
ments [9], topologically associated domains (TADs) [10],
and chromatin loops [12]. However, it remains difficult
and costly to map genome-wide chromatin interactions at
high-resolution. In contrast, ChIP-seq experiments can be
routinely carried out by many labs at much lower cost,
and there is already a large amount of data in the public
domain. It has been noted that chromatin interactions are
associated with distinct patterns of histone modifications
[9, 10, 16, 17], suggesting computational predictions may
be a cost-effective approach to guide the interrogation of
the global landscape of chromatin interactions.
To this end, we have developed a computational

model to predict two important features of chromatin
organization: chromatin interaction hubs ("hubs" for
short) and TAD boundaries. We define hubs as the gen-
omic loci with frequent chromatin interactions. Intui-
tively, these hubs serve as the nucleation sites of
chromatin looping thereby playing an important role in
gene regulation. Our analysis shows that these hubs are
highly enriched with previously annotated regulatory re-
gions. We find that both features can be predicted from
histone modification patterns with good accuracy, but
these patterns differ significantly in terms of predictive
marks and cell-type specificity. The predictions are ro-
bust across datasets and cell types.
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Results
Chromatin interaction hubs are enriched with regulatory
regions
We analyzed a public, high-resolution Hi-C dataset by
Jin et al. [11], obtained from IMR90 cells, a human fetal
lung fibroblast cell line. In their study, the Hi-C data
was normalized by adapting a method previously devel-
oped by Yaffe and Tanay [18] to further incorporate nor-
malized distance and fragment size jointly [11]. Then, by
Fig. 1 Overview of chromatin interaction hubs. a Definition of chromatin i
of significant interactions and classified into four group: Hubs, Median, Low
score and GC Content ratio (left-y-axis) within chromatin anchors is normal
represented by the distance to the closest TSS. c Enrichment of the super-e
divided into two subgroups are according the distance to their closest TSS
analysis using GREAT. e Enrichment of the SNPs in GWAS catalog. Chromat
according the distance to their closest TSS, Proximal (<100 kb) and Distal (>
applying a peak calling algorithm, Jin et al. identified a
total of 1,116,312 statistically significant chromatin inter-
actions among 518,032 chromatin anchors at 5–10 kb
resolution by combining multiple consecutive restriction
fragments [11]. Based on these significant chromatin in-
teractions, we ranked the chromatin anchors according to
interaction frequency and classified them into 4 groups
(Fig. 1a and Additional file 1: Figure S1A). The “Hubs”
group, containing top 10 % of chromatin anchors; the
nteraction hubs. Chromatin anchors are ranked based on the frequency
, None. b DNA sequence of hubs. The average PhastCons conservation
ized against the genomic background. TSS proximity (right-y-axis) is
nhancers in IMR90 cells. Chromatin anchors in each group are further
, Proximal (<100 kb) and Distal (> = 100 kb). d Functional enrichment
in anchors in each group are further divided into two subgroups
= 100 kb)



Huang et al. Genome Biology  (2015) 16:162 Page 3 of 11
“None” group (~55 %) contains chromatin anchors with-
out significant interactions; and the rest was divided into
two roughly equal-sized groups, named the “Median”
group and the “Low” group, respectively.
We focused on the hubs and hypothesized they may

play an important role in gene regulation. To gain insights
into their biological functions, we began by searching for
distinct genetic features. We found that the DNA se-
quence at the hubs was highly conserved (P = 3.9E-60,
Student’s t-test; Fig. 1b) compared with the genomic back-
ground. The GC content at these hubs was significantly
higher (P-value < 2.2E-16, Student's t-test; Fig. 1b). The
hubs tended to be closer to the Transcription Start Sites
(TSS), with a median distance of 43 kb, compared to other
chromatin anchors (Fig. 1b). We also compared the hub
locations with super-enhancers, which were previously
shown to play an important role in the control of cell
identity and diseases [19], and observed a 5-fold enrich-
ment comparing to the genomic background. Further
analysis showed that the enrichment was slightly higher
in distal hubs than proximal ones (Fig. 1c). In total,
75 % of super-enhancers overlapped with at least one
hub (Additional file 1: Figure S1B). Furthermore, func-
tional enrichment analysis using GREAT [20] showed
that genes nearby the hubs were significantly enriched
for development-related processes, such as mesoderm
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morphogenesis (P-value = 1.0E-126) (Fig. 1d). Recently,
integrative analysis of 111 reference human epigenomes
reveals that tissue-specific regulatory elements are
enriched in disease- and trait-associated genetic variants
[21]. Thus, we tested whether these hubs were associ-
ated with disease associated variants. We found that
these hubs were 1.3-fold enriched for the single nucleo-
tide polymorphisms (SNPs) in the genome-wide associ-
ation studies (GWAS) catalog (Fig. 1e, Methods). Taken
together, the above results strongly suggest that the
hubs play an important role in the establishment of cell-
type specific gene regulatory programs and that genetic
variation at these loci may lead to increased risk of
diseases.

Histone marks are highly effective for predicting hubs
To characterize the epigenetic determinants of hubs, we
examined the spatial patterns of CTCF and 9 histone
marks adjacent to each chromatin anchor (Methods)
(Fig. 2). The most distinct features were the elevated
levels of H3K4me1 and H3K27ac, both are well-known
markers for enhancer elements, around the center of the
hubs compared to other chromatin anchors. In addition,
there were also significant albeit weaker differences
among several other histone marks. In order to systemat-
ically investigate how well these hubs could be predicted
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from the combination of multiple histone marks, we built
a Bayesian Additive Regression Trees (BART) model to
classify chromatin anchors based on histone mark ChIP-
seq data alone. BART is a Bayesian "sum-of-trees" model
[22], averaging results from an ensemble of regression
trees (Fig. 3a). Previous studies have shown that BART is
effective in modeling various computational biology prob-
lems [23].
For each hub, we summarized the local pattern for

each histone mark by averaging the sequence reads over
a 300 kb window (about twice the average distance
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HOXB gene cluster
between an anchor and its target site [11]) centered at
the hub location. These summary scores were used as
input for model prediction. The Negatives set was
chosen to be the chromatin anchors with fewest but
non-zero interactions and had the same size as the set
of hubs (Positives set). The reason for excluding chro-
matin anchors associated with no detectable interac-
tions was to remove the bias toward mappable genome
and GC-rich sequences. To avoid over-fitting, we di-
vided the Positives and Negatives sets into two equal
subsets used for model training and testing, respectively.
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The prediction accuracy was assessed using the testing
subset.
We found that the hubs were well predicted using his-

tone marks (Area Under the Curve, or AUC = 0.869,
Fig. 3b), whereas adding certain DNA sequence informa-
tion, such as PhastCons conservation score [24], TSS
proximity and GC content did not further improve the
prediction accuracy significantly (Fig 3b and Additional
file 1: Figure S1C). Among all the marks included in
our model, H3K4me1 was the most informative pre-
dictor (Fig. 3b-c, Additional file 1: Figure S1D). Of
note, H3K27me3 was selected as the second most fre-
quently used predictor even though it did not show
significant enrichment at the hubs (Fig. 3b, Additional
file 1: Figure S1C). To test if this was an artifact, we
compared the performance of a reduced model with
H3K4me1 and H3K27me3 only with an alternative
model with H3K4me1 and H3K27ac only, and found
that combination of H3K4me1 and H3K27me3 was
more effective (Fig. 3b), suggesting that H3K27me3
provides non-redundant predictive information. This
conclusion was further supported by visualization. For
example, there was a hub between the gene SKAP1 and
the HOXB genes cluster and it interacted with 8 different
targets (Fig. 3d). Two of the targets corresponded to
H3K27ac peaks, but they also overlapped with H3K4me1
peaks and therefore did not provide additional informa-
tion. In comparison, four of the other targets around gene
SKAP1 were enriched with H3K27me3 but not H3K4me1.
Therefore, this hub could not be predicted without using
information from H3K27me3.

Hubs prediction using histone marks is robust across
datasets and cell types
To test the robustness of our prediction, we repeated
our analysis on a recently published Hi-C dataset with
higher spatial resolution in multiple cell-types [12]. To
identify hubs from this dataset, we first normalized the
raw interaction matrix (at 5 kb resolution) using the ICE
(Iterative Correction and Eigenvector Decomposition)
algorithm [25]. Then we identified statistically significant
chromatin interactions by using Fit-Hi-C [26] (Methods).
We ranked the 5 kb segments by the interaction frequency
and defined the hubs as the top 10 % segments (Fig. 4a,
Additional file 1: Figure S2A), and referred to this set as
the Rao2014 hubs in order to distinguish it from the set of
hubs defined from ref. 11 (referred to as the Jin2013 hubs).
Despite the difference in experimental protocols, these
two sets of hubs overlapped quite substantially. About
60 % of the Rao2014 hubs overlapped with the Jin2013
hubs. For example, the chromatin interaction profiles
identified from these two datasets were very similar at the
LIN28A locus, and the hub locations were nearly identical
(Fig. 4b).
To evaluate the robustness of our computational pre-
dictions, we used the aforementioned strategy to classify
the Rao2014 hubs for the IMR90 cells and compared the
results we obtained from the Jin2013 hubs. As before,
the prediction accuracy was quite high (AUC = 0.892)
(Fig. 4c, Additional file 1: Figure S2B). Of note, H3K4me1
and H3K27me3, the most informative predictors identified
by analyzing the Jin2013 dataset, were also highly predict-
ive for the Rao2014 dataset (AUC = 0.87). In addition,
the BART model trained using hubs from Rao2014 well
predicted the hubs in Jin2013 (AUC = 0.817) (Fig. 4d),
suggesting the model performance could not be attrib-
uted to platform-specific artifacts.
Since our ultimate goal is to use histone mark based

predictions to guide chromatin interaction profiling, we
tested whether our model developed based on the IMR90
dataset was useful for prediction of chromatin interaction
hubs from a different cell-type. We applied this model to
predict hubs in two different cell-types: GM12878 and
K562, using the cell-type specific histone mark data as in-
put. In both cases, the prediction accuracy was good
(AUC= 0.836 for GM12878; and AUC= 0.796 for K562)
(Fig. 4d). Taken together, these analyses strongly suggest
that our model is robust and provides a useful guide for
identifying cell-type specific chromatin interaction hubs.

Predict TAD boundaries using histone marks
TAD is another important feature in chromatin interac-
tions [10, 27]. Previous studies [10, 12] have shown that
distinct patterns of histone marks around TAD boundar-
ies (also see Fig. 5a), but it remains unclear to what ex-
tent the boundaries can be predicted by combination of
multiple histone marks. To systematically address this
question, we applied our modeling approach to predict
TAD boundaries by using histone marks. Specifically, we
obtained 2,208 TAD boundaries in IMR90 cells identi-
fied by Dixon et al. [10]. As a negative control, we ran-
domly selected a set with the same size of non-boundary
genomic loci with similar interaction frequency. Com-
pared with hubs prediction, we obtained less accurate
performance for predicting TAD boundaries using his-
tone marks (AUC = 0.774, Fig. 5b), which might be in
part due to the coarser resolution of TAD boundaries.
Our model identified CTCF as the most informative pre-
dictor (Fig. 5b-c, Additional file 1: Figure S3), which was
consistent with the well-known role of CTCF in mediat-
ing chromatin interaction sites [8, 10]. However, CTCF
plays many different roles in a context dependent man-
ner, and the distribution of CTCF alone is insufficient
for predicting chromatin domain boundaries. Consistent
with this observation, the performance of using CTCF as
the single predictor in our model showed significantly
reduced prediction accuracy (AUC= 0.703, Fig. 5b). We
found that H3K4me1 was the second most used predictor
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in our model (Fig. 5c). This observation was somewhat
surprising because H3K4me3 was the second most
enriched mark at TAD boundaries (Fig. 5a); however, the
usage of H3K4me3 in our model was less frequent com-
pared to H3K4me1. We reasoned that the discrepancy
might be due to the redundancy between H3K4me3 and
CTCF. To test whether H3K4me1 was indeed more useful
than H3K4me3 in selecting the TAD boundary associated
CTCF sites, we compared the performance of model by
using CTCF +H3K4me1 and by using CTCF +H3K4me3,
we found that the former indeed had more prediction
power (Fig. 5b). Furthermore, we used a simpler approach
using the peak information alone (Methods). Out of a
total of 26,269 CTCF peaks in IMR90 cells, only 5.9 %
overlapped with at least one TAD boundary. This rela-
tively low precision might be in part due to the stringent
threshold used for identifying the most distinct TADs. For
comparison, combining CTCF peaks and negative
H3K4me1 peaks (H3K4me1 was depleted at TAD bound-
aries) substantially increased the precision to 10.4 %,
whereas combining CTCF and H3K4me3 peaks only re-
sulted in a modest improvement to 7.0 % (Fig. 5d). These



B

C

A

−500kb 0 500kb

Relative distance from center

N
or

m
al

iz
ed

 s
ig

in
al

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

CTCF
H3K27ac
H3K27me3
H3K36me3
H3K4me1
H3K4me2
H3K4me3
H3K9ac
H3K9me3
H4K20me1

D

CTCF peaks in IMR90 

5.9% 

10.4% 

7.0% 6.3% 

13.0% 

7.2% 

0% 

5% 

10% 

15% 

CTCF 

CTCF+H
3K

4m
e1

 

CTCF+H
3K

4m
e3

 

CTCF 

CTCF+H
3K

4m
e1

 

CTCF+H
3K

4m
e3

 

TA
D

 b
ou

nd
ar

ie
s 

 %
 

CTCF consensus peaks 

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Histone Marks(0.774)
CTCF(0.703)
H3K4me1(0.585)
H3K4me3(0.675)
CTCF+H3K4me1(0.737)
CTCF+H3K4me3(0.734)

0 0.1 0.2 0.3 

H4K20me1 

H3K27me3 

 H3K9ac 

H3K4me2 

H3K27ac 

H3K4me3 

H3K9me3 

H3K36me3 

H3K4me1 

CTCF 

Variable proportion included  

Fig. 5 Prediction of TAD boundaries in IMR90 cells. a The distribution of various histone marks around TAD boundaries. b Prediction accuracy
using various features. The ROC curves correspond to the testing data. AUC scores are shown in parentheses. c Variable selection in BART model.
The x-axis represents the usage frequency of each variable in the BART model. d Fraction of CTCF peaks (and filtered subsets) that overlap with
TAD boundaries in IMR90 cells. Consensus peaks are defined as those appearing in all 9 cell types

Huang et al. Genome Biology  (2015) 16:162 Page 7 of 11
results suggest that lack of H3K4me1 is indeed a signifi-
cant signature for TAD boundaries.
To test whether cell-type specific histone modification

profiles were needed for prediction of TAD boundaries, we
obtained ChIP-seq data in 8 other cell types (GM12878,
H1HESC, HMEC, HSMM, HUVEC, K562, NHEK, NHLF),
and used the average profile as input of the BART model
(Methods). Despite the lack of data in IMR90 cells, the
prediction performance was almost indistinguishable
(Fig 6a), thereby supporting our hypothesis. Similarly, the
precision of using the CTCF consensus peaks slightly bet-
ter than using the IMR90 specific CTCF peaks (Methods,
Fig. 5d). This result is consistent with the previous obser-
vation that the TAD structure is stable across cell-types
[10, 28]. For comparison, we applied a similar analysis to
predict the chromatin interaction hubs, and found that
the cell-type specific ChIP-seq data was needed to ob-
tain good prediction accuracy (Fig. 6b). Taken together,
these results provide new insights into the cell-type spe-
cific differences between TAD boundaries and hubs.

Discussion
Genome-wide exploration of the 3D chromatin organization
remains a major challenge. Here we develop a compu-
tational approach to use widely accessible ChIP-seq
data to predict chromatin interaction hubs and TAD
boundaries. In both cases, our models result in reason-
able prediction accuracy, supporting the validity of this
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approach. Using computational modeling, we identified
distinctive combinatorial histone patterns between
chromatin interaction hubs and regions with few interac-
tions, and between TAD boundaries and internal domains.
This information has advanced our understanding of the
determinants of chromatin organization, leading to the
hypothesis that these combinatorial patterns may be in-
volved in mediating chromatin interactions. This hypoth-
esis can now be tested experimentally, for instance by
removal of characteristic histone marks via the CRISPR-
Cas9 system.
The concept of chromatin interaction hubs is not new.

For example, this has been discussed in a previous study
of Pol II mediated chromatin interactions [29]. While
previous studies have only focused on specific subsets of
chromatin interactions, our current work provides an un-
biased and genome-wide view of chromatin organization.
It is somewhat unexpected that in this broader context
the hubs remain highly enriched with regulatory elements.
During the preparation of this manuscript, it came to
our attention that another group used a similar ap-
proach to link dynamic change of histone modification
patterns with chromatin interactions [13]. In that study,
H3K4me1 was found to be the most informative pre-
dictor for the changes of chromatin interaction fre-
quency, which is consistent with our current analysis.
On the other hand, there are significant differences be-
tween that study and our work. Aside from the differ-
ences in our prediction outcomes, we also went further
in investigating the combinatorial patterns of histone
marks, and identified H3K27me3 as an additional in-
formative mark for chromatin interaction hubs. Further-
more, we showed that TAD boundaries could be predicted
without using cell-type specific histone modification
information, which was in contrast with hubs. These re-
sults provide new insights into the mechanisms for 3D
chromatin structure maintenance.

Conclusions
We define hubs and show that they mark critical regula-
tory regions essential in human development and dis-
ease. Histone marks are highly effective in predicting
hubs and TAD boundaries. H3K4me1 is the most in-
formative predictor for hubs, whereas CTCF is the most
informative predictor for TAD boundaries. Combination
of multiple histone marks significantly improves the pre-
diction accuracy. We find that prediction of hubs, but
not TAD boundaries, requires cell-type specific histone
modification information. Our model is robust across
datasets. More importantly, we show that the model
built from one cell-type can be used to predict the chro-
matin organization in other cell-types. Our computational
approach provides a useful tool for guided exploration of
the 3D chromatin organization.

Materials and methods
Data availability
The Hi-C data in IMR90 cells for defining hubs was
obtained from Jin et al. [11], which is available at Gene
Expression Omnibus (GEO) with accession number
GSE43070. Two files were downloaded from the supple-
mentary data. The file “SuppData3_all_anchors.txt” con-
tains the locations of all 518,032 anchors covering every
HindIII fragment in the human genome, while the file
“SuppData4_target_of_all_anchors.txt” contains the loca-
tion of all 1,116,312 significant chromatin interactions.
The Hi-C data for TAD boundaries prediction was ob-
tained from Dixon, et al. [10], which is available at GEO
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with accession number GSE35156. The file “Table S4 -
Boundaries in mESC, mouse cortex, hESC, IMR90” was
downloaded from the supplementary data. The list con-
taining 2,208 TAD boundaries in IMR90 cells was used
in our study. The ChIP-seq data of CTCF and 9 histone
marks (H3K27ac, H3K27me3, H3K36me3, H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K9me3, H4K20me1)
in IMR90 cells were obtained from NIH Roadmap Epige-
nome Project [30, 31]. ChIP-seq data of CTCF and 8 his-
tone marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K27ac, H3K27me3, H3K36me3, H4K20me1) in 8
cell types (GM12878, H1HESC, HMEC, HSMM,
HUVEC, K562, NHEK, NHLF) were obtained from
ENCODE [32, 33]. All the ChIP-seq data mentioned
were aligned to hg18 using Bowtie [34] with default
parameter setting. Replicate data were merged if avail-
able. RNA-Seq data in IMR90 cells were downloaded
from Jin et al. [11].

Identify significant chromatin interactions from Rao2014
dataset
The high-resolution, intra-chromosomal raw interaction
matrix in three cell types (IMR90, GM12878_combined
and K562) at 5 kb-resolution were downloaded from
GEO with accession number GSE63525. To remove the
various forms of biases [25, 35] in the raw interaction
matrix, we normalized it by using the ICE algorithm
[25], as implemented in the Hi-Corrector package [36].
Then we used Fit-Hi-C [26] to identify statistically sig-
nificant intra-chromosomal interactions, using the pa-
rameters -U = 2000000, -L = 10000, with the threshold of
FDR = 0.05.

DNA sequence conservation score
DNA sequence conservation was evaluated by using the
44-way multiple alignment PhastCons score, which was
downloaded from [24, 37]. The average conservation
score over a 300 kb window was calculated for each
chromatin anchor.

GWAS catalog SNPs enrichment
The SNPs curated in NHGRI GWAS Catalog [38] were
downloaded through the UCSC Table Browser [39]. We
expanded the GWAS SNPs to include SNPs in strong
linkage disequilibrium (LD) using SNAP [40] and per-
form the enrichment using the expanded set. To remove
length associated artifacts, we used a 5 kb window
around the center to represent each anchor for enrich-
ment analysis. An anchor is determined to be hit by
GWAS SNPs if there is at least one SNP located in the
5 kb window, which was calculated by Bedtools [41]. For
each chromatin anchor group, the fold enrichment over
genome background was defined as (m/n)/(M/N), where
m and M represent the number of within-group and
genome-wide SNPs respectively, and n and N represent
the number of within-group and genome-wide chroma-
tin anchors respectively.

Super-enhancer enrichment
The super-enhancers in IMR90 cells were obtained from
Hnisz et al. [19]. The overlap between the 5 kb window
of chromatin anchors with super-enhancers was defined
as those sharing at least 1 bp, which was calculated by
using Bedtools intersect [41]. Fold enrichment analysis
of super-enhancers was done as for GWAS SNPs.

BART model
The BART model consists of three parts: a sum-of-trees
model, a set of priors for the structure and the leaf pa-
rameters, and a likelihood function for the terminal
nodes [42]. For the binary classification problem, the
BART model can be expressed as [22]:

P Y ¼ 1jXð Þ ¼ Φ T 1 Xð Þ þ T2 Xð Þ þ … þ Tm Xð Þð Þ

where X represents the histone mark summary scores, Y
represents the classification outcome (1 for hub; and 0
otherwise), Ti's represent the i-th regression tree, Φ de-
notes the cumulative density function of the standard
normal distribution. BART also reports the usage fre-
quency of each predicting variable, which is used as the
basis for selecting most informative predictors. We built
the BART model using the R package “bartMachine”
[22] with default parameters. We also varied the model
parameter values, such as different threshold of inter-
actions frequency to define Hubs or different BART
parameters, and repeated the prediction analysis. We
found that the prediction performance was only
slightly affected (Additional file 1: Figure S1E-F). The
R code to run BART model for predicting chromatin
interaction hubs using histone marks information is
available in [43].

Prediction of TAD boundaries using CTCF peaks
All CTCF and histone mark peaks were called using
MACS [44], with a stringent p-value threshold 1.0E-10.
To remove length associated artifacts, we used a 250 bp
window, the median length of CTCF peaks, around the
summit to represent each CTCF peak. The H3K4me3
and H3K4me1 peaks were identified similarly, with the
exception that we only considered the negative peaks for
H3K4me1 because it was depleted at TAD boundary
sites. To obtain a consensus set of CTCF peaks, we ob-
tained CTCF ChIP-seq data in 8 additional cell-types
and analyzed as described above. The subset of CTCF
peaks that appeared in all 9 cell lines was selected as the
consensus peaks.
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Additional file

Additional file 1: Figure S1. Prediction of Jin2013 hubs. (A)
Distribution of chromatin anchors interactions frequency. Top 10 % are
defined as hubs. (B) Percentage of super-enhancers covered by hubs. (C)
Prediction accuracy using DNA sequence genetic features, including
PhastCons conservation score, TSS proximity and GC content. AUC scores
are shown in parentheses. (D) Prediction accuracy using individual
histone marks. AUC scores are shown in parentheses. (E) Hubs prediction
performance for hubs defined using different thresholds of interactions
frequency. (F) Hubs prediction performance with various number of trees.
Figure S2. Prediction of Rao2014 hubs. (A) Distribution of chromatin
anchors interactions frequency. Top 10 % are defined as hubs. (B) Prediction
accuracy using individual histone marks. AUC scores are shown in
parentheses. Figure S3. TAD boundary prediction accuracy using
individual histone marks. (PDF 1896 kb)
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